Analysis and Approaches Topic Checklist

Standard and Higher

Higher only

IB-A&A		00	
Number and A	lgebra		
Standard Form			
Arithmetic Series			
Geometric series (including sum of infinite geometric series) Sigma Notation			
Series applications (simple Interest, compound Interest, depreciation/population growth/spread of			
disease)			
Indices rules – multiplication, division and negative powers Logs – Index rule and natural logarithms			
Approximation, decimal places, significant figures			
Upper and lower bounds of rounded numbers.			
Percentage errors Estimation			
Amortization and annuities using technology			
Use technology to solve:			
 Systems of linear equations in up to 3 variables Polynomial equations 			
Solving logs and exponential equations (including hidden quadratics with exponentials)			
Logs – 5 rules (index, power, multiplication, division, change of base)			
Indices Rules – rational powers and getting like bases in order to simplify The sum of infinite geometric sequences			
Complex numbers			
Matrices			
Eigenvalues and eigenvectors			
Function	s		
3 forms of a straight line (gradient intercept, general, point-gradient)			
Gradients and intercepts Midpoint and distances			
Straight Line Graphs – finding equations			
Parallel lines			
Perpendicular lines Functions – basic concept, notation and domain and range			
Functions - inverse (inverse function reverses or undoes the effect of a function). Concept of inverse			
function as a reflection in the line $y = x$, and the notation $f^{-1}(x)$			
Creating a sketch from information given or a context, including transferring a graph from screen to paper.			
Using technology to graph functions including their sums and differences.			
Using a calculator to sketch and locate key features of graphs of functions (max, min, zeros, intercepts, vertex, asymptotes, intersection of 2 curves)			
Modelling			
• Linear $f(x) = mx + c$			
 Quadratics (axis of symmetry, vertex, zeros, x and y intercepts) f(x) = ax² + bx + c Exponential growth and decay f(x) = ka^x + c, f(x) = ka^{-x} + c, f(x) = ke^{rx} + c 			
Including horizontal asymptotes			
• Direct/inverse variation $f(x) = ax^n$			
• Cubic models $f(x) = ax^3 + bx^2 + cx + d$ • Trig models $f(x) = asin(bx) + c \cdot f(x) = acos(bx) + d$			
• Trig models $f(x) = asin(bx) + c$, $f(x) = acos(bx) + d$ Modelling skills:			
Use the modelling process described above section to create, fit and use the theoretical			
 models in section SL2.5 and their graphs. Develop and fit the model: 			
 Given a context recognize and choose an appropriate model and possible parameters. 			
Determine a reasonable domain for a model.			
 Find the parameters of a model. Comment on the appropriateness and reasonableness of a model. 			
 Justify the choice of a particular model, based on the shape of the data, properties of the 			
curve and/or on the context of the situation.			
Reading, interpreting and making predictions based on the model. Functions – composite and types of functions (one to one, many to one)			
Functions – composite and types of infictions (one to one, many to one)			
Transformations of graphs			
Translations: $y = f(x) + b$, $y = f(x - a)$ Reflections: in the x axis $y = -f(x)$			
Reflections in the y axis $y = f(-x)$			
Vertical stretch with scale factor p : $y = p f(x)$.			
Horizontal stretch with scale factor $\frac{1}{q}$, $y = f(qx)$			
Composite transformations. Modelling			
Exponential models to calculate half-life.			
Natural logarithmic models $f(x) = a + b \ln x$			
Sinusoidal models $f(x) = asin(b(x - c) + d$			

Ladia large the set of the s					1	
shart are type and hanks are type types.Intermine type of type and type of type	Logistic models $f(x) = \frac{L}{1+Ce^{-kx}}$, $L, C, k > 0$					
unce taken and ingraphiling is defermined and and and and and and and and and an	Scaling very large or small numbers using logarithms.					
membra diversion of the discoversion of the set of the discoversion o						
Induction of the energy of				1	1	
Values and stars are altime denomenal bolk induits price stars interainer and control of the stars int		onometry				
Import of contracts of the soleImport of the sole of controlImport of controlImporto						
Interminent of anyme bookers to any based of gale </td <td></td> <td></td> <td></td> <td></td> <td></td>						
Bor of access of a super a larger to access of a set of a gene at						
Set of any let known is or indexiding the advector into again advector into adve						
Sine can be functed with any large set of large larg	(SOHCAHTOA)					
Sine/controller undergroup out of unit onlyImage of the set of	Size of an angle between two intersecting lines or between a line and a place					
Aver of low	Sine, cosine, and tangent ratios using special triangles					
PrintgenImageImageImageImageImageReprintImageImageImageImageImageReprint of derivation and depensionImageImageImageImageReprint of derivation and depensionImageImageImageImageReprint of derivation and depensionImageImageImageImageReprint of derivationImageImageImageImageImageReprint of derivationImageImageImageImageImage <td>Sine/cosine Rule (including the ambiguous case of sine rule)</td> <td></td> <td></td> <td></td> <td></td>	Sine/cosine Rule (including the ambiguous case of sine rule)					
BarrierImage <t< td=""><td>Area of a triangle</td><td></td><td></td><td></td><td></td></t<>	Area of a triangle					
Angle of available and depression Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Equation of a first setup is setup is periodicable blacks. Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Reference and setup is periodicable blacks. Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Image of a setup is periodicable blacks. Reference and setup is periodicable blacks. Image of a setup is periodicable blac	Pythagoras					
Av mathematic processing is been interval. Image: been interval is been interval. Image: been inte	Bearings					
Example displanted bised in service displant with bised in the displant displ	Angles of elevation and depression					
where degrees betwee weeks of bases of the Addition of a text on easing Version degreen. Nearest adjustude improvement of text on the addition of a text on easing Version degreen. Nearest adjustude improvement of text on the addition of a text on text o						
mightabuton						
Agalaxian Janu Janu Sang Janu Janu Janu Janu Janu Janu Janu Janu	, , , , , , , , , , , , , , , , , , ,					
Refers Image: addition of solution () Image: addition of solution () Image: addition of solution () Definition of core 0, not in the present optical addition of the end core Image: addition () Image: addition () Core of core 0, not in the present optical addition of the end core Image: addition () Image: addition () Core of core 0, not in the present optical addition of the end core Image: addition () Image: addition () Core of core 0, not in the present optical addition of the end core Image: addition () Image: addition () Core of the end core of the end core Image: addition () Image: addition () Image: addition () Core of the end core of the end core Image: addition () Image: addition () Image: addition () Core of the end core of the end core Image: addition () Image: addition () Image: addition () Core of the end core of the end core Image: addition () Image: addition () Image: addition () Notice of the end core Image: addition () Image: addition () Image: addition () Notice of the end core Image: addition () Image: addition () Image: addition () Notice of the end core Image: addition () Image: addition () Image: addition () Notice of the end core Image: addition () Image: addition () Image: addition ()						
As the ingrit multi-rese of assess of a start multi-reserve the out of the dimension of the most of the multi-reserve target be appendixed by the multi-reserve target by the out of the dimension of the dimensis of dimensis dimension of the dimension of the dimensis dimen						
Definition of code 9, and Pintsmark of the unit order Image and provide an						
Ending involves of multiple only find angle should here unit order Image in the same one ing function, find the same function ing in a finde interval. Benchice star" $x + \cos^2 x = 1$ and tax $x = \frac{1000}{1000}$ Benchice star" $x + \cos^2 x = 1$ and tax $x = \frac{1000}{1000}$ Benchice star" $x + \cos^2 x = 1$ and tax $x = \frac{1000}{1000}$ Benchice starts reflections in a finde interval. Exclusion of a solar starts reflection. Exclusion of a solar starts reflection. <td></td> <td></td> <td></td> <td></td> <td></td>						
Given the value of ose try function, find another (relationship between trates) $ $	· · · · · · · · · · · · · · · · · · ·					
Identify the cast 2 = 1 and max 2 mm² Identify the cast 2 = 1 and max 2 mm² Graphical methods of soling trigonometric or part interval. Identify the cast 2 = 1 and max 2 mm² Graphical methods of soling trigonometric or part interval. Identify the cast 2 = 1 and max 2 mm² Comparison of the clave transformation is now dimensions using matrices. reflections, horizontal and Identify the clave transformation of points. Comparison of the clave transformation of a scale and scale. Identify the clave transformation of points. Comparison of a vector and a scale. Identify the clave transformation of points. Comparison of a vector and a scale. Identify the clave transformation representation of the clave transformation matrix. Comparison of a vector and a scale. Identify the clave transformation representation of the clave transformation representation of the clave transformation representation. Identify the clave transformation representation of the clave transformation. Modeling linear motion works constant vectors in the clave transformation. Identify the clave transformation representation of the clave transformation. Modeling linear motion works constant vectors in the clave transformation. Identify the clave transformation. Modeling linear motion works constant vectors. Identify the clave transformation. Modeling linear motion works constant vectors. Identify the clave transformation. Definitio						
Graphal methods of solving trajometric equations in a fine interval.Image: Comparit interval in						
convertic transformations of points in box dimensions using mattices reflections, horizontal and vertical stetcher, engements, transformation and to attain compositions of the above transformation of a statisfication of the discrement of a transformation matrixImage: Image transformation of the discrement of a transformation matrixComposition of the above transformation of the discrement of a transformation matrixImage transformation of the discrement of a transformation matrixImage transformation of the discrement of a transformation matrixComposition of the above transformation of the discrement of a transformation matrixImage transformation of the discrement of a transformation matrixComposition of the above transformation of the discrement of transformationImage transformation of the discrement of transformationComposition of a vector, bit wellsImage transformation of the discrement of transformationPation vectors, bit wellsImage transformationVector equication of a line in two and three dimensionsImage transformationVector equication of a line in two and three dimensionsImage transformationModeling linear motions with orist wells and performationsImage transformationDefinition and calculation of the scalar product of two vectors.Image transformation of the vector product of two vectors.Composents of vectorsImage transformation of the vector product of two vectors.Composents of vectorsImage transformation of the vector product of two vectors.Definition and calculation of the vector product of two vectors.Image transformation of the vector product of two vectors.Composents of vectorsImage transformation of the vector prod						
vertial statisticke, enlargements, translations and rotations						
Compositions of the above transformationsImage of the above transformation of transformation matrixImage of the above transformation of transformation matrixConcept of a vector and a scalar, Representation of wectors using directed file agreements. Unit vectors jusa vectors <i>i, j, k</i> Image of the above transformation matrixComponents of a vector, outin representation = $\binom{\mu_{i,j}}{\mu_{i,j}} = \nu_i l + \nu_j l + \nu_j k$ Image of the above transformation wectorsPosition vectors $\partial A = a$ Image of the above transformation is the matrixImage of the above transformation wectorsPosition vectors $\partial A = a$ Image of the above transformation is the matrixImage of the above transformation is the matrixVector againtation to kinematicsImage of the above transformation is the matrixImage of the above transformation wectorsVector againtation to kinematicsImage of the vector product frameworksImage of the above transformation is the matrixPostform and calculation of the vector product of two vectors.Image of the vector product of two vectors.Image of the vector product of two vectors.Portion and calculation of the vector product of two vectors.Image of the vector product of two vectors.Image of the vector product of two vectors.Components of vectorsImage of the vector product of two vectors.Image of the vector of the vector product of two vectors.Image of the vector product of two vectors.Components of vectorsImage of the vector product of two vectors.Image of the vector product of two vectors.Image of the vector product of two vectors.Components of vectorsImage of the vector product of two vectors.Image o						
Geometric interpretation of the determinant of a transformation matrixImage: transformation matrixRepresentation of vectors using directed fine segments. Unit vectors $f_{a}I_{a}$ Image: transformation matrixRepresentation of vectors using directed fine segments. Unit vectors $f_{a}I_{a}$ Image: transformation matrixRescaling and normalizing vectorsImage: transformation matrixPostorio vectors $f_{a}I_{a}$ Image: transformation matrixRescaling and normalizing vectorsImage: transformation matrixVector equation of a line in two and three dimensionsImage: transformation matrixVector equation full vectors upoter of the vector product of two vectors.Image: transformation matrixMotion with variable velocity in two dimensionsImage: transformation matrixDefinition and calculation of the scalar product of two vectors.Image: transformation matrixThe angle between two vectors, the acute angle between two lines.Image: transformation of Image: t						
concept of a vector and a staler. Image: Concept of a vector is $L_j L_i$. Components of a vector; column representation $= \begin{pmatrix} \mu_{ij} \\ \mu_{ij} \end{pmatrix} = n_i l + n_j l + n_i k$. Image: Concept of a vector; column representation $= \begin{pmatrix} \mu_{ij} \\ \mu_{ij} \end{pmatrix} = n_i l + n_j l + n_i k$. Position vectors $\overline{A} - a$ Image: Concept of a vector; column representation $= \begin{pmatrix} \mu_{ij} \\ \mu_{ij} \end{pmatrix} = n_i l + n_j l + n_i k$. Position vectors $\overline{A} - a$ Image: Concept of a vector; column representation $= \begin{pmatrix} \mu_{ij} \\ \mu_{ij} \end{pmatrix} = n_i l + n_j l + n_i k$. Vector applications to kinematics Image: Concept of a vector; column representation $= \begin{pmatrix} \mu_{ij} \\ \mu_{ij} \end{pmatrix} = n_i l + n_j l + n_i k$. Vector applications to kinematics Image: Concept of a vector; the advector is the vectors. Image: Concept of a vector; the advector product of the vectors. Motion with variable velocity in two and three dimensions Image: Concept of a vector; the advector product of the vectors. Image: Concept of a vector; the advector product of the vectors. Components of vectors; the advect advector product of the vectors. Image: Concept of a vector; the advect advector product of the vectors. Image: Concept of a vector sign of the vectors. Components of vectors; in degree and a vector gradue. Image: Concept of a vector sign of the vectors. Image: Concept of the vectors. Single graphs; conglete graphs, weighted graphs. Image: Concept of a vector sign of the vector sign of the vectors. Image: Concept of the vector sign of the vector						
Representation of vectors subgidirected line segments. Image: Sectors 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						
Components of a vector; column representation $= \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} = y_1 + y_j + y_3 k$ Image: the set of the s						
Position vectors $\overline{OA} = n$ Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of Construction of the vectors reduct of two vectors. Image: Construction of the vector product of two vectors. Image: Construction of Construction of Construction of Construction of Construction of the vector product of two vectors. Image: Construction of Construction o						
Position vectors $\overline{OA} = n$ Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of a line in two and three dimensions. Image: Construction of Construction of the vectors reduct of two vectors. Image: Construction of the vector product of two vectors. Image: Construction of Construction of Construction of Construction of Construction of the vector product of two vectors. Image: Construction of Construction o	Components of a vector, solumn concentration $u = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u i + u i + u k$					
Sescaling and normalising wettersImage: Control of the dimension of dimension	Components of a vector, column representation $v = \begin{pmatrix} v_2 \\ v_3 \end{pmatrix} = v_1 t + v_2 J + v_3 K$					
vector equation of a line in two and three dimensions Image: Complexity in two and three dimensions. Image: Complexity in two and three dimensions. Motion with variable velocity in two dimensions Image: Complexity in two dimensions Image: Complexity in two dimensions Definition and calculation of the scalar product of two vectors. Image: Complexity in two dimensions Image: Complexity in two dimensions Definition and calculation of the scalar product of two vectors. Image: Complexity in two dimensions Image: Complexity in the scalar product of two vectors. Components of vectors Image: Complexity in the scalar vectors, adjacent vector, adjacent vectors, adjacent vector, ad	Position vectors $\overrightarrow{OA} = a$					
Vector applications to kinematicsImage: solution of the scalar product of two vectors.Image: solution and calculation of the scalar product of two vectors.Image: solution and calculation of the scalar product of two vectors.Image: solution and calculation of the scalar product of two vectors.Image: solution and calculation of the scalar product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation of the vector product of two vectors.Image: solution and calculation and calc	Rescaling and normalizing vectors					
Modelling linear motion with constant velocity in two and three dimensions. Image:	Vector equation of a line in two and three dimensions					
Motion with variable velocity in two dimensions Image between two vectors. Image between two vectors. Definition and calculation of the scalar product of two vectors. Image between two vectors. Image between two vectors. Definition and calculation of the vector product of two vectors. Image between two vectors. Image between two vectors. Geometric interpretation of [v x w] Image between two vectors. Image between two vectors. Graph theory. Graphs, vertices, edges, adjacent vertices, adjacent deges. Degree of a vertex Image between two vectors. Image between two vectors. Simple graphs, complete graphs, weighted graph Image between two vectors. Image between two vectors. Image between two vectors. Subgraphs; trees Image between two vectors. Image between two vectors. Image between two vectors. Velog ted adjacency tables Image between two vectors. Image between two vectors. Image between two vectors. Velog ted adjacency tables Image between two vectors. Image between two vectors. Image between two vectors. Velog ted adjacency tables Image between two vectors. Image between two vectors. Image between two vectors. Velog ted adjacency tables Image between two vectors. Image between two vectors. Image between two vectors. <	Vector applications to kinematics					
Definition and calculation of the scalar product of two vectors. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two vectors. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two lines. Image between two vectors; the acute angle between two vectors; Image between two vectors; the acute angle between two vectors; Image between two vectors;	Modelling linear motion with constant velocity in two and three dimensions.					
The angle between two vectors; the acute angle between two lines. Image: Components of the vector product of two vectors. Image: Components of Vectors Image: Componen	Motion with variable velocity in two dimensions					
Definition and calculation of the vector product of two vectors. Image: Components of vectors Geometric interpretation of [vxw] Image: Components of vectors Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertex Image: Components of vectors Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent vertiter, adjacent vertices, adjacent vertices, adjacent ve	Definition and calculation of the scalar product of two vectors.					
Geometric interpretation of [v×w] Image: Components of vectors Image: Components of vectors Components of vectors Image: Components of vectors Image: Components of vectors Simple graphs; complete graphs; weighted graphs Image: Components of vectors Image: Components of vectors Simple graphs; complete graphs; weighted graphs Image: Components of vectors Image: Components of vectors Simple graphs; indegree and out degree of a directed graph Image: Components of vectors Image: Components of vectors Subgraphs; indegree and out degree of a directed graph Image: Components of vectors Image: Components of vectors Adjacency matrices Image: Components of vectors Image: Components of vectors Image: Components of vectors Walks Image: Components of the transition matrix for a strongly-connected, undirected or directed graph Image: Components of vectors Image: Components of vectors Construction of the transition matrix for a strongly-connected, undirected or directed graph Image: Components of vectors Image: Components of vectors Uterian traits and circuits Image: Components of vectors Image: Components of vect	The angle between two vectors; the acute angle between two lines.					
Components of vectors Image: Components of vectors Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertex Image: Components of Vectors Simple graphs; complete graphs; weighted graphs Image: Components of Vectors Image: Components of Vectors Simple graphs; in degree and out degree of a directed graph Image: Components of Vectors Image: Components of Vectors Subgraphs; trees Image: Components of Vectors Image: Components of Vectors Image: Components of Vectors Adjacency matrices Image: Components of Vectors Image: Components of Vectors Image: Components of Vectors Number of k-length walks (or less than k-length walks) between two vertices Image: Components of Vectors Image: Components of Vectors Number of k-length walks (or less than k-length walks, paths, circuits, cycles Image: Components of Vectors Image: Components of Vectors Construction of the transition matrix for a strongly-connected, undirected graph Image: Components of Vectors Image: Components of Vectors Hamiltonian paths and cycles Image: Components of Vectors Image: Components of Vectors Image: Components Kruskal's and Prim's algorithms for finding minimum spanning tree Image: Components of Vectors Image: Components Image: Componend algorithm for solution, to determine the shortest route around	Definition and calculation of the vector product of two vectors.					
Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertexImage: Construction of the co	Geometric interpretation of $ \mathbf{v} \times \mathbf{w} $					
Simple graphs; complete graphs; weighted graphs Image: complete graphs; in degree and out degree of a directed graph Image: complete graphs; in degree and out degree of a directed graph Subgraphs; trees Image: complete graphs; in degree and out degree of a directed graph Image: complete graphs; in degree and out degree of a directed graph Subgraphs; trees Image: complete graphs; in degree and out degree of a directed graph Image: complete graphs; in degree and out degree of a directed graph Walks Image: complete graphs; in degree and out degree of a directed or directed graph Image: complete graphs; in degree and out degree of a directed or directed graph Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: complete graphs; means Image: complete graphs; means Construction of the transition matrix for a strongly- connected, undirected graph Image: complete graph with undirected graphs; walks, trails, paths, circuits, cycles Image: complete graph with undirected graphs; walks, trails, paths, circuits, cycles Image: complete graph with up to four od vertices, going along trees Image: complete graph with up to four od vertices, going along each edge at least once Image: complete graph with up to four od vertices, going along each edge at least once Image: complete graph with up to four od vertices, going along each edge at least once Image: complete graph with up to four od vertices, going along each edge at least once Image: complete graph with up to four od vertices, going along each edge at least once </td <td>Components of vectors</td> <td></td> <td></td> <td></td> <td></td>	Components of vectors					
Directed graphs, in degree and out degree of a directed graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of Construction of Construction of Construction of Construction of Construction of Construction, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least once Image: Construction Construction of Construction of Construction of Construction of Construction of the travelling salesman problem Image: Construction Construction Construction Construction Construction of Construction Construction of Construction of Construction of Construction of Construction Construction of Construction of Construction of Constructin Construction Construction Construction C	Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertex					
Subgraphs; trees Image: Subgraphs; trees Image: Subgraphs; trees Image: Subgraphs; trees Adjacency matrices Image: Subgraphs; trees Image: Subgraphs; trees Image: Subgraphs; trees Number of k-length walks (or less than k-length walks) between two vertices Image: Subgraphs; trees Image: Subgraphs; trees Veighted adjacency tables Image: Subgraphs; trees Image: Subgraphs; trees Image: Subgraphs; trees Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Subgraphs; trees Image: Subgraphs; trees Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Subgraphs; trees Image: Subgraphs; trees Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Subgraphs; trees Image: Subgraphs; trees Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Subgraphs; trees Image: Subgraphs; trees Image: Subgraphs; trees Hamiltonian paths and cycles Image: Subgraphs; trees Image: Subgraph						
Adjacency matrices Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Weighted adjacency tables Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Tree and cycle algorithms with undirected graphs. Walks, trails, paths, circuits, cycles Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Hamiltonian paths and cycles Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Kruskal's and Prim's algorithm for determining an upper bound for the travelling salesman problem Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Deleted vertex algorithm for determining an upper bound for the travelling salesman problem Image: Construction of the travelling salesman problem Image: Construction of the travelling salesman problem Concepts of population, sample, random sample, discrete and continuous data. Image: Construction of outliers Image: Construction of contliers						
Walks Image: Construction of the ransition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of Construction of the transition matrix for a strongly- connected, undirected or directed graph Image: Construction of Construction of Construction of Construction of the travelling salesman problem Image: Construction of Constructin Construction of Construction of Constructi						
Number of k -length walks (or less than k -length walks) between two verticesImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of the transition matrix for a strongly- connected, undirected or directed graphImage: construction of transition matrix for a strongly- connected, undirected or directed graphImage: construction of transition matrix for a strongly- connected, undirected or directed graphImage: construction of transition matrix for a strongly- connected, undirected or directed graphImage: constructed or dir						
Weighted adjacency tables Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Tree and cycle algorithms with undirected graphs. Walks, trails, paths, circuits, cycles Image: Construction of the transition matrix for a strongly- connected, undirected graph Image: Construction of the transition matrix for a strongly- connected, undirected graph Hamiltonian paths and cycles Image: Construction of the transition matrix for a strongly connected, undirected graph Image: Construction of the transition matrix for a strongly connected, undirected graph Minimum spanning tree (MST) graph algorithms Image: Construction of the strongly connected, undirected around a weighted graph with up to four odd vertices, going along each edge at least once Image: Construction of determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least once Image: Construction of the travelling salesman problem Nearest neighbour algorithm for determine the Hamiltonian cycle of least weight in a weighted complete graph Image: Concepts of population, sample, random sample, discrete and continuous data. Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, discrete and continuous data. Reliability of data sources and bias in sampling Image: Concepts of population, sample, discrete and continuous data. Image: Concepts of population for detitries	Walks					
Construction of the transition matrix for a strongly- connected, undirected graphImage: construction of the transition matrix for a strongly- connected, undirected graphTree and cycle algorithms with undirected graphs. Walks, trails, paths, circuits, cyclesImage: construction of the transition matrix for a strongly- connected, undirected graphImage: construction of the transition matrix for a strongly- connected, undirected graphEulerian trails and circuitsImage: construction of the transition matrix for a strongly- connected, undirected graphImage: construction of the transition matrix for a strongly- connected, undirected graphHamiltonian paths and cyclesImage: construction of the transition matrix for finding minimum spanning treesImage: construction of the transition matrix for a slow for a strongly construction of the transition and algorithm for solution, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least onceImage: construction of the transition and cycle of least weight in a weighted complete graphImage: construction of the transition and cycle of least weight in a weighted complete graphImage: construction of the transition and cycle of least weight in a weighted complete graphImage: construction of the transition cycle of least weight in a weighted complete for a stransition and upper bound for the travelling salesman problemImage: construction of the transition and cycle of least weight in a weighted complete for a stransitice and continuous data.Image: construction of the transition and cycle of least weight in a weighted complete for a stransitice and continuous data.Image: construction of the transition and cycle of least weight in a weighted complete for a stransitice and continuous data.Image: construction of the transitice and c						
Tree and cycle algorithms with undirected graphs. Walks, trails, paths, circuits, cycles Image: Concepts of population, sample, random sample, discrete and continuous data. Fue and cycle algorithm for solution, sampling Image: Concepts of population, sample, random sampling Image: Concepts of population, sampling Image: Concepts of population, sampling Image: Concepts of population, sampling Concepts of population, sampling Image: Concepts of population of outliers Image: Concepts of population of outliers Image: Concepts of population population population of population population population popu						
Eulerian trails and circuitsImage: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemHarris of population, sample, random sample, discrete and continuous data.Image: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemConcepts of population, sample, random sample, discrete and continuous data.Image: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemConcepts of population, sample, random sample, discrete and continuous data.Image: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemConcepts of population, sample, random sample, discrete and continuous data.Image: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problemImage: Concepts of population of outliersImage: Constraint of the travelling salesman problemImage: Constraint of the travelling salesman problem						
Hamiltonian paths and cyclesImage: Concepts of population, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random samplingImage: Concepts of poulation, samplingImage:						
Minimum spanning tree (MST) graph algorithmsImage: Concepts of population, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation, sample, random sample, discrete and continuous data.Image: Concepts of poulation of outliersImage: Concepts of poulation of outliersImage: Concepts of poulation of outliersImage: Concepts of poulation of pou						
Kruskal's and Prim's algorithms for finding minimum spanning treesImage: Chinese postman problem and algorithm for solution, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least onceImage: Chinese postman problem and algorithm for solution, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least onceImage: Chinese postman problem and algorithm for solution, to determine the Hamiltonian cycle of least weight in a weighted complete graphImage: Chinese postman problem and postman problem and postman problem and postman problem and postman problem algorithm for determining an upper bound for the travelling salesman problemImage: Chinese postman problem algorithm for determining an upper bound for the travelling salesman problemImage: Chinese postman problem algorithm for determining a lower bound for the travelling salesman problemImage: Chinese postman problem algorithm for determining algorithm						
Chinese postman problem and algorithm for solution, to determine the shortest route around a weighted graph with up to four odd vertices, going along each edge at least once Image: Chinese postman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph Image: Chinese postman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph Image: Chinese postman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph Image: Chinese postman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph Image: Chinese postman problem to determining an upper bound for the travelling salesman problem Image: Chinese postman problem to determining an upper bound for the travelling salesman problem Image: Chinese postman problem to determining a lower bound for the travelling salesman problem Image: Chinese postman problem to determine the travelling salesman problem Image: Chinese postman postman problem Image: Chinese postman problem to determine the travelling salesman problem Image: Chinese postman postman postman problem Image: Chinese postman						
weighted graph with up to four odd vertices, going along each edge at least onceImage: Concepts of population, sample, random sample, discrete and continuous data.Image: Concepts of population is any principal samplingImage: Concepts of poulation is any principal samplingImage: Concepts of po						
Travelling salesman problem to determine the Hamiltonian cycle of least weight in a weighted complete graphImage: Complete is a sale of the travelling salesman problemImage: Complete is a sale of the travelling salesman problemNearest neighbour algorithm for determining an upper bound for the travelling salesman problemImage: Complete is a sale of the travelling salesman problemImage: Complete is a sale of the travelling salesman problemDeleted vertex algorithm for determining a lower bound for the travelling salesman problemImage: Complete is a sale of the travelling salesman problemImage: Complete is a sale of the travelling salesman problemConcepts of population, sample, random sample, discrete and continuous data.Image: Complete is a samplingImage: Complete is a samplingConcepts of population, sample, random sample, discrete and continuous data.Image: Complete is a samplingImage: Complete is a samplingInterpretation of outliersImage: Complete is a samplingImage: Complete is a samplingImage: Complete is a sampling						
graphImage: Concepts of population, sample, random sample, discrete and continuous data.Image: Concepts of population, sample, random sample, discrete and continuous data.Image: Concepts of population of utiliersImage: Concepts of population of						
Nearest neighbour algorithm for determining an upper bound for the travelling salesman problem Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population is anappling Image: C						
Deleted vertex algorithm for determining a lower bound for the travelling salesman problem Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sampling Image: Co						
Statistics and Probability Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population sampling Image: Concept						
Concepts of population, sample, random sample, discrete and continuous data. Image: Concepts of population, sample, random sample, discrete and continuous data. Reliability of data sources and bias in sampling Image: Concepts of population, sample, random sample, discrete and continuous data. Interpretation of outliers Image: Concepts of population, sample, random sample, discrete and continuous data.		abability.		1	1	
Reliability of data sources and bias in sampling Interpretation of outliers Interpretation of outliers						
Interpretation of outliers						
Sampling techniques and their effectiveness						
	Sampling techniques and their effectiveness					

			1
Presentation of data (discrete and continuous): frequency distributions (tables)			
Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles, range			
and interquartile range (IQR)		<u> </u>	
Histograms			
Production and understanding of box and whisker diagrams			
Measures of central tendency (mean, median and mode)			
Estimation of mean from grouped data			
Modal class			
Measures of dispersion (interquartile range, standard deviation and variance).			
Effect of constant changes on the original data			
Quartiles of discrete data			
Scatter diagrams; lines of best fit, by eye, passing through the mean point			
Linear correlation of bivariate data			
Pearson's product-moment correlation coefficient and line of best fit			
Use of the equation of the regression line for prediction purposes (reliability)			
Equation of the regression line of y on x			
Interpret the meaning of the parameters, <i>a</i> and <i>b</i> , in a linear regression $y = ax + b$			
Basic probability and sample space			
Venn diagrams			
Tree diagram			
Two-way tables			
Addition formula			
Mutually exclusive events			
Independent events			
Conditional probability			
Concept of discrete random variables and their probability distributions	[
Expected value (mean), for discrete data	[
Applications such as fair game			
Binomial distribution (including mean and variance)			
Normal distribution (probability calculations and working backwards to find the value, mean or s.d.			
Spearman's rank correlation coefficient, $r_{\rm c}$	<u> </u>		
Awareness of the appropriateness and limitations of Pearson's product moment correlation coefficient			
and Spearman's rank correlation coefficient, and the effect of outliers on each Formulation of null and alternative hypotheses H_0 and H_1		<u> </u>	
Significance levels			
p -values			
x^2 test for independence, contingency tables, degrees of freedom, critical value			
x^2 goodness of fit			
The <i>t</i> -test			
Use of the p -value to compare the means of two populations			
Using one-tailed and two-tailed tests			
Design of valid data collection methods, such as surveys and questionnaires			
Selecting relevant variables from many variables			
Choosing relevant and appropriate data to analyse			
Categorizing numerical data in a χ^2 table and justifying the choice of categorisation			
Choosing an appropriate number of degrees of freedom when estimating parameters from data when			
carrying out the χ^2 goodness of fit test			
Definition of reliability and validity. Reliability tests. Validity tests			
Non-linear regression			
Evaluation of least squares regression curves using technology			
Sum of square residuals (SS _{res}) as a measure of fit for a model	1		
The coefficient of determination R^2 . Evaluation of R^2 using technology			
Linear transformation of a single random variable			
0			
Expected value of linear combinations of n random variables. Variance of linear combinations of n independent random variables.			
\vec{x} as an unbiased estimate of μ			
s_{n-1}^2 as an unbiased estimate of σ^2			
A linear combination of <i>n</i> independent normal random variables is normally distributed (sample)			
$X \sim N(\mu, \sigma^2) \Longrightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$			
Central limit theorem			
Confidence intervals for the mean of a normal population		ļ	
Poisson distribution, its mean and variance			
Sum of two independent Poisson distributions has a Poisson distribution			
Critical values and critical regions			
Test for population mean for normal distribution			
Test for proportion using binomial distribution	[
Test for population mean using Poisson distribution			
Use of technology to test the hypothesis that the population product moment correlation coefficient (ρ)			
is 0 for bivariate normal distributions.			
Type I and II errors including calculations of their probabilities	1		
Transition matrices and powers of transition matrices			
Regular Markov chains			
Initial state probability matrices			
inderstate probability indertees	1	1	
	1		
Calculation of steady state and long-term probabilities by repeated multiplication of the transition matrix or by solving a system of linear equations.			

Calculus				
Concept of a limit				
Derivative interpreted as gradient function and as rate of change.				
Increasing/Decreasing (including graphical representations of $f'(x) > 0$, $f'(x) < 0$, $f'(x) = 0$)				
$y = x^n$ differentiation technique (exponents are integers)				
Equations of Tangents and Normals				
Stationary maximum and minimum points.				
Optimisation problems in context`				
Approximating areas using the trapezoidal rule.				
Composite functions differentiation techniques – chain rule $((f(x))^n, lnf(x), e^{f(x)}, sinf(x), cos f(x))$				
Product and Quotient Rule				
Related rates of change				
Second derivative and using this to test for max/min				
Kinematics				
$\int x^n$ Integration technique				
Definite integrals				
Finding area under a curve (between the x axis) and between two curves				
Composite functions integration techniques $(f(x))^n$, $e^{f(x)}$, $sinf(x)$, $cos f(x)$, etc)				
Finding area under a curve (between the y axis)				
Integration by inspection/recognition/reverse chain rule				
Volume of revolution (between the x and y axis)				
Setting up a model/differential equation from a context.				
Solving by separation of variables				
Slope fields and their diagrams.				
Euler's method for finding the approximate solution to first order differential equations.				
Numerical solution of $\frac{dy}{dx} = f(x, y)$.				
Numerical solution of the coupled system				
$\frac{dx}{dt} = f_1(x, y, t), \frac{dy}{dt} = f_2(x, y, t)$				
Phase portrait for the solutions of coupled differential equations of the form:				
$\frac{dx}{dt} = ax + by$				
$\frac{dx}{dt} = ax + by$ $\frac{dy}{dt} = cx + dy$				
dt = cx + ay Qualitative analysis of future paths for distinct, real, complex and imaginary eigenvalues.				
Sketching trajectories and using phase portraits to identify key features such as equilibrium points,				
stable populations and saddle points.				
Solutions of $\frac{d^2x}{dt^2} = f\left(x, \frac{dx}{dt}, t\right)$ by Euler's method.				