Number and Algebra				
Standard Form				
Arithmetic Series				
Geometric series (including sum of infinite geometric series)				
Sigma Notation				
Series applications (simple Interest, compound Interest, depreciation/population growth/spread of disease)				
Indices rules - multiplication, division and negative powers				
Logs - Index rule and natural logarithms				
Approximation, decimal places, significant figures				
Upper and lower bounds of rounded numbers.				
Percentage errors				
Estimation				
Amortization and annuities using technology				
Use technology to solve: - Systems of linear equations in up to 3 variables - Polynomial equations				
Solving logs and exponential equations (including hidden quadratics with exponentials)				
Logs - 5 rules (index, power, multiplication, division, change of base)				
Indices Rules - rational powers and getting like bases in order to simplify				
The sum of infinite geometric sequences				
Complex numbers				
Matrices				
Eigenvalues and eigenvectors				
Functions				
3 forms of a straight line (gradient intercept, general, point-gradient)				
Gradients and intercepts				
Midpoint and distances				
Straight Line Graphs - finding equations				
Parallel lines				
Perpendicular lines				
Functions - basic concept, notation and domain and range				
Functions - inverse (inverse function reverses or undoes the effect of a function). Concept of inverse function as a reflection in the line $y=x$, and the notation $f^{-1}(x)$				
Creating a sketch from information given or a context, including transferring a graph from screen to paper. Using technology to graph functions including their sums and differences.				
Using a calculator to sketch and locate key features of graphs of functions (max, min, zeros, intercepts, vertex, asymptotes, intersection of 2 curves)				
Modelling - Linear $f(x)=m x+c$ - Quadratics (axis of symmetry, vertex, zeros, x and y intercepts) $f(x)=a x^{2}+b x+c$ - Exponential growth and decay $f(x)=k a^{x}+c, f(x)=k a^{-x}+c, f(x)=k e^{r x}+c$ Including horizontal asymptotes - Direct/inverse variation $f(x)=a x^{n}$ - Cubic models $f(x)=a x^{3}+b x^{2}+c x+d$ - Trig models $f(x)=\operatorname{asin}(b x)+c, f(x)=\operatorname{acos}(b x)+d$				
Modelling skills: - Use the modelling process described above section to create, fit and use the theoretical models in section SL2.5 and their graphs. - Develop and fit the model: - Given a context recognize and choose an appropriate model and possible parameters. - Determine a reasonable domain for a model. - Find the parameters of a model. - Comment on the appropriateness and reasonableness of a model. - Justify the choice of a particular model, based on the shape of the data, properties of the curve and/or on the context of the situation. - Reading, interpreting and making predictions based on the model.				
Functions - composite and types of functions (one to one, many to one)				
Functions - finding inverses				
Transformations of graphs				
$\begin{aligned} & \text { Translations: } y=f(x)+b, y=f(x-a) \\ & \text { Reflections: in the } x \text { axis } y=-f(x) \\ & \text { Reflections in the } y \text { axis } y=f(-x) \end{aligned}$				
Vertical stretch with scale factor $p: y=p f(x)$. Horizontal stretch with scale factor $\frac{1}{q}, y=f(q x)$				
Composite transformations.				
Modelling Exponential models to calculate half-life.				
Natural logarithmic models $f(x)=a+b \ln x$				
Sinusoidal models $f(x)=\operatorname{asin}(b(x-c)+d$				

| Logistic models $f(x)=\frac{L}{1+C e^{-k x}}, L, C, k>0$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| Scaling very large or smats numbers logarithms. | | | |
| Linearizing data using logarithms to determine if the data has an exponential or a power relationship
 using best-fit straight lines to determine parameters | | | |
| Interpretation of log-log and semi-log graphs | | | |

Geometry and Trigonometry

The distance between two points in three- dimensional space, and their midpoint.
Volume and surface area of three-dimensional solids including right-pyramid, right cone, sphere, Volume and surface area of three-dimensional
The size of an angle between two intersecting lines or between a line and a plane
Use of sine, cosine and tangent ratios to find the sides and angles of right-angled triangles
SOHCAHTOA)
Size of an angle between two intersecting lines or between a line and a place
Sine, cosine, and tangent ratios using special triangle
Sine/cosine Rule (including the ambiguous case of sine rule)
Area of a triangle
Pythagoras
Bearings
Angles of elevation and depression
Arc lengths and areas of sectors (not including radians)
Equations of perpendicular bisectors
Voronoi diagrams: sites, vertices, edges, cells. Addition of a site to an existing Voronoi diagram. Nearest neighbour interpolation
Applications of the "toxic waste dump" problem
Radians
Arc lengths and areas of sectors (in radians)
Definition of $\cos \theta, \sin \theta$ in terms of the unit circle
Finding trig values of multiple angles of special angles using the unit circle
Given the value of one trig function, find another (relationship between ratios)
dentities $\sin ^{2} x+\cos ^{2} x=1$ and $\tan x=\frac{\sin x}{\cos x}$
Graphical methods of solving trigonometric equations in a finite interval.
Geometric transformations of points in two dimensions using matrices: reflections, horizontal and
vertical stretches, enlargements, translations and rotations
Compositions of the above transformation
Geometric interpretation of the determinant of a transformation matrix
Concept of a vector and a scalar.
Representation of vectors using directed line segments
Unit vectors; base vectors i, i,
Components of a vector; column representation $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=v_{1} \boldsymbol{i}+v_{2} \boldsymbol{j}+v_{3} \boldsymbol{k}$
Position vectors $\overrightarrow{O A}=a$
Rescaling and normalizing vectors
Vector equation of a line in two and three dimensions
Vector applications to kinematics
Modelling linear motion with constant velocity in two and three dimensions.
Motion with variable velocity in two dimensions
Definition and calculation of the scalar product of two vectors.
The angle between two vectors; the acute angle between two lines.
Definition and calculation of the vector product of two vectors.
Geometric interpretation of | v$\times \boldsymbol{w} \mid$
Components of vectors
Graph theory: Graphs, vertices, edges, adjacent vertices, adjacent edges. Degree of a vertex
Simple graphs; complete graphs; weighted graphs
Directed graphs; in degree and out degree of a directed graph
Subgraphs; trees
Adjacency matrices
Walks
Number of k-length walks (or less than k-length walks) between two vertices Weighted adjacency tables
Construction of the transition matrix for a strongly- connected, undirected or directed graph Tree and cycle algorithms with undirected graphs. Walks, trails, paths, circuits, cycles
Eulerian trails and circuits
Hamiltonian paths and cycles
Minimum spanning tree (MST) graph algorithms
Kruskal's and Prim's algorithms for finding minimum spanning trees
Chinese postman problem and algorithm for solution, to determine the shortest route around a
weighted graph with up to four odd vertices, going along each edge at least once
Travelling salesman problem to determine the Hamiltonian cycle of least weight in a weighted complete graph
Nearest neighbour algorithm for determining an upper bound for the travelling salesman problem
Deleted vertex algorithm for determining a lower bound for the travelling salesman problem

Statistics and Probability

Concepts of population, sample, random sample, discrete and continuous data
Reliability of data sources and bias in sampling
Interpretation of outliers
Sampling techniques and their effectivenes

www.mymathscloud.com
Presentation of data (discrete and continuous): frequency distributions (tables)
Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles, range and interquartile range (IQR)
Histograms
Production and understanding of box and whisker diagrams
Measures of central tendency (mean, median and mode)
Estimation of mean from grouped data
Modal class
Measures of dispersion (interquartile range, standard deviation and variance).
Effect of constant changes on the original data
Quartiles of discrete data
Scatter diagrams; lines of best fit, by eye, passing through the mean point
Linear correlation of bivariate data
Pearson's product-moment correlation coefficient and line of best fit
Use of the equation of the regression line for prediction purposes (reliability)
Equation of the regression line of y on x
Interpret the meaning of the parameters, a and b, in a linear regression $y=a x+b$
Basic probability and sample space
Venn diagrams
Tree diagram
Two-way tables
Addition formula
Mutually exclusive events
Independent events
Conditional probability
Concept of discrete random variables and their probability distributions
Expected value (mean), for discrete data
Applications such as fair game
Binomial distribution (including mean and variance)
Normal distribution (probability calculations and working backwards to find the value, mean or s.d. Spearman's rank correlation coefficient, r_{s}
Awareness of the appropriateness and limitations of Pearson's product moment correlation coefficient and Spearman's rank correlation coefficient, and the effect of outliers on each
Formulation of null and alternative hypotheses H_{0} and H_{1}
Significance levels
p-values
x^{2} test for independence, contingency tables, degrees of freedom, critical value
x^{2} goodness of fit
The t-test
Use of the p-value to compare the means of two populations
Using one-tailed and two-tailed tests
Design of valid data collection methods, such as surveys and questionnaires
Selecting relevant variables from many variables
Choosing relevant and appropriate data to analyse
Categorizing numerical data in a χ^{2} table and justifying the choice of categorisation
Choosing an appropriate number of degrees of freedom when estimating parameters from data when
carrying out the χ^{2} goodness of fit test
Definition of reliability and validity. Reliability tests. Validity tests
Non-linear regression
Evaluation of least squares regression curves using technology

The coefficient of determination R^{2}. Evaluation of R^{2} using technology
Linear transformation of a single random variable
Expected value of linear combinations of n random variables
Variance of linear combinations of n independent random variables.
\bar{x} as an unbiased estimate of μ
$s_{n-1}{ }^{2}$ as an unbiased estimate of σ^{2}
A linear combination of n independent normal random variables is normally distributed (sample)
$X \sim N\left(\mu, \sigma^{2}\right) \Rightarrow \bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$
Central limit theorem
Confidence intervals for the mean of a normal population
Poisson distribution, its mean and variance
Sum of two independent Poisson distributions has a Poisson distribution
Critical values and critical regions
Test for population mean for normal distribution
Test for proportion using binomial distribution
Test for population mean using Poisson distribution
Use of technology to test the hypothesis that the population product moment correlation coefficient (ρ) is 0 for bivariate normal distributions.
Type I and II errors including calculations of their probabilities
Transition matrices and powers of transition matrice
Regular Markov chains
Initial state probability matrices
Calculation of steady state and long-term probabilities by repeated multiplication of the transition
matrix or by solving a system of linear equations.

Calculus			
Concept of a limit			
Derivative interpreted as gradient function and as rate of change.			
Increasing/Decreasing (including graphical representations of $f^{\prime}(x)>0, f^{\prime}(x)<0, f^{\prime}(x)=0$)			
$y=x^{n}$ differentiation technique (exponents are integers)			
Equations of Tangents and Normals			
Stationary maximum and minimum points.			
Optimisation problems in context ${ }^{\text { }}$			
Approximating areas using the trapezoidal rule.			
Composite functions differentiation techniques - chain rule $\left((f(x))^{n}, \ln f(x), e^{f(x)}, \sin f(x), \cos f(x)\right)$			
Product and Quotient Rule			
Related rates of change			
Second derivative and using this to test for max/min			
Kinematics			
$\int x^{n}$ Integration technique			
Definite integrals			
Finding area under a curve (between the \times axis) and between two curves			
Composite functions integration techniques $(f(x))^{n}, e^{f(x)}, \sin f(x), \cos f(x)$, etc)			
Finding area under a curve (between the y axis)			
Integration by inspection/recognition/reverse chain rule			
Volume of revolution (between the x and y axis)			
Setting up a model/differential equation from a context.			
Solving by separation of variables			
Slope fields and their diagrams.			
Euler's method for finding the approximate solution to first order differential equations.			
Numerical solution of $\frac{d y}{d x}=f(x, y)$.			
Numerical solution of the coupled system $\frac{d x}{d t}=f_{1}(x, y, t), \frac{d y}{d t}=f_{2}(x, y, t)$			
Phase portrait for the solutions of coupled differential equations of the form: $\begin{aligned} & \frac{d x}{d t}=a x+b y \\ & \frac{d y}{d t}=c x+d y \end{aligned}$ Qualitative analysis of future paths for distinct, real, complex and imaginary eigenvalues. Sketching trajectories and using phase portraits to identify key features such as equilibrium points, stable populations and saddle points.			
Solutions of $\frac{d^{2} x}{d t^{2}}=f\left(x, \frac{d x}{d t}, t\right)$ by Euler's method.			

